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Abstract

Using the Schottky uniformization of a marked Riemann surface, the space of equivalence classes
of complex projective structures on a compact orier€d surface gets identified, in an obvious
fashion, with the total space of the holomorphic cotangent bundle of the corresponding Teichmdiller
space. This identification is proved to be compatible with the natural symplectic structures on these
two spaces. If we consider the other identification of the same two spaces obtained using the Bers’
construction of universal Riemann surface, then the compatibility of the symplectic structures was
established by Kawai [S. Kawai, Math. Ann. 305 (1996) 161-182]. © 2000 Elsevier Science B.\V.
All rights reserved.
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1. Introduction

Let S be a compact oriented®> surface of genug, with g > 2. Let Diffp(S) denote
the group of diffeomorphisms of homotopic to the identity map of. For the natural
action of Diffg(S) on the space of conformal structures, Cahf on S, compatible with
the orientation, the quotient Cogff) /Diff o(S) is the Teichmdller space ¢f, which will be
denoted by7 (S).

A projective structureon S is defined by giving a covering of by coordinate charts
of the form (U, ¢), whereg is an orientation preserving smooth map from an open subset
U of S to an open subset @, such that every transition function is a restriction of some
Maobius transformation [3]. Recall that a Mébius transformation is a function of the form
z+ (az+b)/(cz+d), wherea, b, c,d € C andad — bc= 1.
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Let M6b(S) denote the space of all projective structures $nThe quotient space
Mob(S) /Diff ¢(S), which is a complex manifold of dimensiorg6- 6, will be denoted
by P(S).

The natural projection

Vi PS) = T(S) (1.2)

is a torsor for the holomorphic cotangent bund@t&7 (S). This means that for any point
[X] € T(S), representing a Riemann surfake the cotangent spad@f’;(]T(S), which is
HO(X, K$?), acts freely transitively on the fibgr—([X]) [3]. More precisely, the fiber is
an affine space for the vector spad8(X, K $2).

Given aC® section

FiT(S) — P(S) (1.2)
of ¥, i.e.,¥ o f is the identity map off (S), we have aC> diffeomorphism
Ly :T*T(S) — P(S) (1.3)

which send any cotangent vectore 7,77 (S), overt € T(S), to the projective structure
f () + o on the Riemann surface represented by the point
Using the developing map for a projective structure, we have a map
_ ~ Hom(rr1(S), PSL(2, C))
D:P(S) - R := PSLZ C) ,
which is locally a biholomorphism [5,6]. The image of the mApis contained in the
smooth locus oR. Let Qp denote the holomorphic symplectic structurefa¢$) obtained
by pulling back, using the map, the natural symplectic structure on the smooth locus of
R. Given a representatign € R, let Ad(p) denote the flat vector bundle dhassociated
to p for the adjoint representation of P&, C) on its Lie algebra. If Adp) denotes the
associated local system, then

T,R = HX(S, Ad(p)),

and the pairing
o, B /trace(oz U B),
s

whereu, 8 € HY(S, Ad(p)), defines a symplectic structure on the smooth loct® which
was constructed in [1,2].

Let @2 denote the natural symplectic structure on the cotangent baridies).

Using his idea of simultaneous uniformization, Bers constructed a universal Riemann
surface ovef7 (§), which gave a section of the map defined in (1.1). Let denote this
section ofyr. The main theorem of [7, p. 165], says that the equality

TLiQp = Q (1.4)

is valid, whereL,, is constructed in (1.3).
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A Schottky grouii; ¢ PSL(2, C) is afinitely generated, free, purely loxodromic Kleinian
group [8]. Forany compact Riemann surfacef genus, there is a Schottky groug, freely
generated by elements, sayy1, 2, ... , vg}, such that quotien®(G)/G is isomorphic
to X, where2(G) c CP is the region of discontinuity fof. The quotient spac® (G)/ G
has a natural projective structure, with the inclusion mag &) in CP* as the developing
map.

Choose amarking oK, i.e., fixas, ... ,ag, b1, ... , by € m1(X, xo) such thatr1(X, xo)
is the free group generated by, ... , a,, b1, ... , b} quotiented by its normal subgroup
generated bY[¢_;a;b;a; b . Then there is a Schottky grou@ uniformizing X, as
sketched above, such that the imagesoin 71 (X, xo) is the normal subgroup generated
by {a1, ..., ag}. Furthermore, such a group is unique up to an inner conjugation by an
element of PSI2, C). Since an inner conjugation by an element of PSIC) does not
alter the projective structure, the projective structurexas uniquely determined.

Therefore, using the above construction of a projective structure from the Schottky uni-
formization, we have a sectiorof the submersiog (constructed in (1.1)) asin (1.2). This
sections is known to be holomorphic. Our aim here is to prove the following analog of the
theorem of Kawai [7].

Theorem 1.5. Let s denote the section gf obtained from the Schottky uniformization.
Then the equality

TLiQp =Q
is valid.

The above theorem will be proved in Section 2 after establishing a criterion for the
validity of the equality (1.4) for a sectiofi of . The criterion is expressed in terms of
the difference betweeyi and theC> section ofys given by the Fuchsian uniformization
(Lemma 2.7).

2. A criterion for compatibility of the symplectic structures

Continuing with the notation of Section 1, our first step would be to establish the following
lemma.

Lemma 2.1. Given aC® section f of the submersiaf, the equality
JTL?QP =Q
is valid if and only if the 2-formy*Qp on 7 (S) vanishes identically.

Proof. Take aC* (1,0)-formé on7T(S). Let

t@):T*T(S) = T*T(S)
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be the translation map, which sends a cotangent vectoi7*7 (5), at a pointz € 7(S),
to the cotangent vectas + 6(z).
We first want to show that

10)*Q = Q + p*do, (2.2)

wherep : T*T(S) — T(S) is the natural projection.

The above assertion is evident. Inde®d+= do, wherex denotes the tautological 1-form
onT*T(S). Itis immediate from the definition af thatz (0)*a = « + p*6. This implies
the equality in (2.2).

Recall the section of ¢, constructed by Bers, that was used in (1.4). Now, for the given
sectionf, setd to be the(1, 0)-form defined by the identity

h(z) +6(2) = f(z)

valid forallz € T(S).
Therefore, we have the following commutative diagram of maps:

T*T(S) 2 PS)
4 t(6) \’ (2.3)
Ly

T*T(S) — P

where the above diffeomorphism Bf(S) is defined by sending € v ~1(z) for z € T(S),
to the projective structure + 6(z).
Therefore, in view of the equality (2.2), in order to complete the proof of the lemma it
suffices to show that the equality in the statement of the lemma is valid if and omly=f@.
Consider the map : T7(S) — T*T(S) defined byd, which sends any € 7(S) to
the cotangent vectdt(z) € T;*7(S). Since the pullback of2 to 7(S), by using the zero
section, vanishes identically, the equality (2.2) implies that

do =0"Q. (2.4)

Now from the result of Kawai, stated in (1.4), and the commutativity of the diagram (2.3),
it follows immediately that the equality

0°Q =nf*Qp (2.5)

is valid. Combining (2.4) and (2.5) we conclude thatd 0 if and only if f*Qp = 0. This
completes the proof of the lemma. O

Since from the uniformization theorem we know that any Riemann suXaoé genus
at least two, is a quotient of the upper half plane by a discrete torsion-free subgroup of
PSL(2, R), which is unique up to an inner conjugatidhhas a natural projective structure.
Consequently, we get @ sectiont, of the submersions in (1.1), obtained from the
Fuchsian uniformization.
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For aC* sectionf of v, let A ; denote the smootti, 0)-form on7(S) defined by the
condition

(@) + () = f(z) forallz e T(S), (2.6)

wherert is the section given by the Fuchsian uniformization.

Lemma 2.7. Let f be a holomorphic section of the submersjoim (1.1). The equality
nLyQp =Q

is valid if and only if the(2, 0)-form dA  on T (S) vanishes identically.

Proof. Letd, denote the smoottl, 0)-form on7 (S) defined by the condition = 6, + &,
whereh, as before, is the section ¢f constructed by Bers.

Combining (2.4) and (2.5) we havé r = f*Qp. Consequently, we have the following
equality:

Frap - rrap = P00 _ (2.8)
T T

wheref, is defined above.

SinceQp is a holomorphic symplectic form, and the sectipris assumed to be holo-
morphic, the formf*Qp is holomorphic of typ&2, 0).

In view of Lemma 2.1 and the equality obtained by taking ¢aed) component of the
two sides of the equality (2.8), to complete the proof of the lemma it is enough to show that

(*Qp)>0 =0, (2.9)

where(r*Qp)%Cis the(2, 0) type component of the 2-formi*Qp. Indeed, if (2.9) is valid,
then the(2, 0) type component of the equality (2.8) would becofif®@p = 9 ¢ /x.

Firstly, (2.4) and (2.5) together imply tha®#d'7 = t*Qp. Hencer*Qp is a sum of a
(2, 0)-form, namelydé, /=, and a(1, 1)-form, namelydd, /7. Secondly, since the image
of 7 is contained in the smooth locus of the subset

Hom(r1(S), PSL(2,R))  Hom(w1(S), PSL(2, C))
PSLZ, R) . PSL2, C) ’
and the pullback of2 to the smooth locus of Hotm1(S), PSL(2, R))/PSL(2, R) by the
inclusion map is a real 2-form, the identity Qp = t*Qp is valid. From these two
observations we conclude thet2p must be of type1l, 1). In fact, in [2, Section 2] it has

been proved that*Qp is a constant scalar multiple of the Weil-Petersson Kéhler form on
T (S). This establishes the equality (2.9), and the proof of the lemma is complete []

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. We will show that the sectiondefined by the Schottky uniformiza-
tion satisfies the criterion in Lemma 2.7. Firstly, the sectigaholomorphic [4,5,9].



62 I. Biswas / Journal of Geometry and Physics 35 (2000) 57-62
Now, the main result of [9, Remark 2, p. 310] says that
hs = 308,

where); is the(1, 0)-form constructed in (2.6) for the sectionwfdefined by the Schottky
uniformization, andS is a C* function on7(S) constructed in [9], which is the action
function for Liouville equation.

Thereforegi; = 0, and the proof of Theorem1.5 is complete. O
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