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Abstract

Using the Schottky uniformization of a marked Riemann surface, the space of equivalence classes
of complex projective structures on a compact orientedC∞ surface gets identified, in an obvious
fashion, with the total space of the holomorphic cotangent bundle of the corresponding Teichmüller
space. This identification is proved to be compatible with the natural symplectic structures on these
two spaces. If we consider the other identification of the same two spaces obtained using the Bers’
construction of universal Riemann surface, then the compatibility of the symplectic structures was
established by Kawai [S. Kawai, Math. Ann. 305 (1996) 161–182]. © 2000 Elsevier Science B.V.
All rights reserved.

MSC:30F60; 53B10; 58F05

Keywords:Riemann surfaces; Teichmüller space; Schottky uniformization; Symplectic structure; Cotangent
bundle

1. Introduction

Let S be a compact orientedC∞ surface of genusg, with g ≥ 2. Let Diff0(S) denote
the group of diffeomorphisms ofS homotopic to the identity map ofS. For the natural
action of Diff0(S) on the space of conformal structures, Conf(S), on S, compatible with
the orientation, the quotient Conf(S)/Diff 0(S) is the Teichmüller space ofS, which will be
denoted byT (S).

A projective structureon S is defined by giving a covering ofS by coordinate charts
of the form(U, φ), whereφ is an orientation preserving smooth map from an open subset
U of S to an open subset ofC, such that every transition function is a restriction of some
Möbius transformation [3]. Recall that a Möbius transformation is a function of the form
z 7→ (az+ b)/(cz+ d), wherea, b, c, d ∈ C andad− bc = 1.
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Let Möb(S) denote the space of all projective structures onS. The quotient space
Möb(S)/Diff 0(S), which is a complex manifold of dimension 6g − 6, will be denoted
byP(S).

The natural projection

ψ : P(S) → T (S) (1.1)

is a torsor for the holomorphic cotangent bundleT ∗T (S). This means that for any point
[X] ∈ T (S), representing a Riemann surfaceX, the cotangent spaceT ∗

[X]T (S), which is

H 0(X,K⊗2
X ), acts freely transitively on the fiberψ−1([X]) [3]. More precisely, the fiber is

an affine space for the vector spaceH 0(X,K⊗2
X ).

Given aC∞ section

f : T (S) → P(S) (1.2)

of ψ , i.e.,ψ ◦ f is the identity map ofT (S), we have aC∞ diffeomorphism

Lf : T ∗T (S) → P(S) (1.3)

which send any cotangent vectorω ∈ T ∗
t T (S), over t ∈ T (S), to the projective structure

f (t)+ ω on the Riemann surface represented by the pointt .
Using the developing map for a projective structure, we have a map

D : P(S) → R := Hom(π1(S),PSL(2,C))

PSL(2,C)
,

which is locally a biholomorphism [5,6]. The image of the mapD is contained in the
smooth locus ofR. Let�P denote the holomorphic symplectic structure onP(S) obtained
by pulling back, using the mapD, the natural symplectic structure on the smooth locus of
R. Given a representationρ ∈ R, let Ad(ρ) denote the flat vector bundle onS associated
to ρ for the adjoint representation of PSL(2,C) on its Lie algebra. If Ad(ρ) denotes the
associated local system, then

TρR = H 1(S,Ad(ρ)),

and the pairing

α, β 7→
∫
S

trace(α ∪ β),

whereα, β ∈ H 1(S,Ad(ρ)), defines a symplectic structure on the smooth locus ofRwhich
was constructed in [1,2].

Let� denote the natural symplectic structure on the cotangent bundleT ∗T (S).
Using his idea of simultaneous uniformization, Bers constructed a universal Riemann

surface overT (S), which gave a section of the mapψ defined in (1.1). Leth denote this
section ofψ . The main theorem of [7, p. 165], says that the equality

πL∗
h�P = � (1.4)

is valid, whereLh is constructed in (1.3).
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A Schottky groupG ⊂ PSL(2,C) is a finitely generated, free, purely loxodromic Kleinian
group [8]. For any compact Riemann surfaceX of genusg, there is a Schottky groupG, freely
generated byg elements, say{γ1, γ2, . . . , γg}, such that quotient�(G)/G is isomorphic
toX, where�(G) ⊂ CP1 is the region of discontinuity forG. The quotient space�(G)/G
has a natural projective structure, with the inclusion map of�(G) inCP1 as the developing
map.

Choose a marking onX, i.e., fixa1, . . . , ag, b1, . . . , bg ∈ π1(X, x0) such thatπ1(X, x0)

is the free group generated by{a1, . . . , ag, b1, . . . , bg} quotiented by its normal subgroup
generated by

∏g

i=1aibia
−1
i b−1

i . Then there is a Schottky groupG uniformizing X, as
sketched above, such that the image ofG in π1(X, x0) is the normal subgroup generated
by {a1, . . . , ag}. Furthermore, such a groupG is unique up to an inner conjugation by an
element of PSL(2,C). Since an inner conjugation by an element of PSL(2,C) does not
alter the projective structure, the projective structure onX is uniquely determined.

Therefore, using the above construction of a projective structure from the Schottky uni-
formization, we have a sections of the submersionψ (constructed in (1.1)) as in (1.2). This
sections is known to be holomorphic. Our aim here is to prove the following analog of the
theorem of Kawai [7].

Theorem 1.5. Let s denote the section ofψ obtained from the Schottky uniformization.
Then the equality

πL∗
s�P = �

is valid.

The above theorem will be proved in Section 2 after establishing a criterion for the
validity of the equality (1.4) for a sectionf of ψ . The criterion is expressed in terms of
the difference betweenf and theC∞ section ofψ given by the Fuchsian uniformization
(Lemma 2.7).

2. A criterion for compatibility of the symplectic structures

Continuing with the notation of Section 1, our first step would be to establish the following
lemma.

Lemma 2.1. Given aC∞ section f of the submersionψ , the equality

πL∗
f �P = �

is valid if and only if the 2-formf ∗�P onT (S) vanishes identically.

Proof. Take aC∞ (1,0)-formθ onT (S). Let

t (θ) : T ∗T (S) → T ∗T (S)
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be the translation map, which sends a cotangent vectorω ∈ T ∗
z T (S), at a pointz ∈ T (S),

to the cotangent vectorω + θ(z).
We first want to show that

t (θ)∗� = �+ p∗dθ, (2.2)

wherep : T ∗T (S) → T (S) is the natural projection.
The above assertion is evident. Indeed,� = dα, whereα denotes the tautological 1-form

onT ∗T (S). It is immediate from the definition ofα that t (θ)∗α = α + p∗θ . This implies
the equality in (2.2).

Recall the sectionh of ψ , constructed by Bers, that was used in (1.4). Now, for the given
sectionf , setθ to be the(1,0)-form defined by the identity

h(z)+ θ(z) = f (z)

valid for all z ∈ T (S).
Therefore, we have the following commutative diagram of maps:

T ∗T (S) Lh→ P(S)
↓ t (θ) ↓
T ∗T (S)

Lf→ P(S)

(2.3)

where the above diffeomorphism ofP(S) is defined by sendingy ∈ ψ−1(z) for z ∈ T (S),
to the projective structurey + θ(z).

Therefore, in view of the equality (2.2), in order to complete the proof of the lemma it
suffices to show that the equality in the statement of the lemma is valid if and only if dθ = 0.

Consider the mapθ : T (S) → T ∗T (S) defined byθ , which sends anyz ∈ T (S) to
the cotangent vectorθ(z) ∈ T ∗

z T (S). Since the pullback of� to T (S), by using the zero
section, vanishes identically, the equality (2.2) implies that

dθ = θ
∗
�. (2.4)

Now from the result of Kawai, stated in (1.4), and the commutativity of the diagram (2.3),
it follows immediately that the equality

θ
∗
� = πf ∗�P (2.5)

is valid. Combining (2.4) and (2.5) we conclude that dθ = 0 if and only iff ∗�P = 0. This
completes the proof of the lemma. �

Since from the uniformization theorem we know that any Riemann surfaceX, of genus
at least two, is a quotient of the upper half plane by a discrete torsion-free subgroup of
PSL(2,R), which is unique up to an inner conjugation,X has a natural projective structure.
Consequently, we get aC∞ sectionτ , of the submersionψ in (1.1), obtained from the
Fuchsian uniformization.
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For aC∞ sectionf of ψ , let λf denote the smooth(1,0)-form onT (S) defined by the
condition

τ(z)+ λf (z) = f (z) for all z ∈ T (S), (2.6)

whereτ is the section given by the Fuchsian uniformization.

Lemma 2.7. Let f be a holomorphic section of the submersionψ in (1.1).The equality

πL∗
f �P = �

is valid if and only if the(2,0)-form ∂λf onT (S) vanishes identically.

Proof. Let θτ denote the smooth(1,0)-form onT (S) defined by the conditionτ = θτ +h,
whereh, as before, is the section ofψ constructed by Bers.

Combining (2.4) and (2.5) we have dθ/π = f ∗�P . Consequently, we have the following
equality:

f ∗�P − τ ∗�P = dθ − dθτ
π

= dλf
π
, (2.8)

whereθτ is defined above.
Since�P is a holomorphic symplectic form, and the sectionf is assumed to be holo-

morphic, the formf ∗�P is holomorphic of type(2,0).
In view of Lemma 2.1 and the equality obtained by taking the(2,0) component of the

two sides of the equality (2.8), to complete the proof of the lemma it is enough to show that

(τ ∗�P )2,0 = 0, (2.9)

where(τ ∗�P )2,0 is the(2,0) type component of the 2-formτ ∗�P . Indeed, if (2.9) is valid,
then the(2,0) type component of the equality (2.8) would becomef ∗�P = ∂λf /π .

Firstly, (2.4) and (2.5) together imply that dθτ /π = τ ∗�P . Henceτ ∗�P is a sum of a
(2,0)-form, namely∂θτ /π , and a(1,1)-form, namely∂θτ /π . Secondly, since the image
of τ is contained in the smooth locus of the subset

Hom(π1(S),PSL(2,R))

PSL(2,R)
⊂ Hom(π1(S),PSL(2,C))

PSL(2,C)
,

and the pullback of� to the smooth locus of Hom(π1(S),PSL(2,R))/PSL(2,R) by the
inclusion map is a real 2-form, the identityτ ∗�P = τ ∗�P is valid. From these two
observations we conclude thatτ ∗�P must be of type(1,1). In fact, in [2, Section 2] it has
been proved thatτ ∗�P is a constant scalar multiple of the Weil-Petersson Kähler form on
T (S). This establishes the equality (2.9), and the proof of the lemma is complete.�

Now we are in a position to prove Theorem 1.5.

Proof of Theorem 1.5. We will show that the sections defined by the Schottky uniformiza-
tion satisfies the criterion in Lemma 2.7. Firstly, the sections is holomorphic [4,5,9].
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Now, the main result of [9, Remark 2, p. 310] says that

λs = 1
2∂S,

whereλs is the(1,0)-form constructed in (2.6) for the section ofψ defined by the Schottky
uniformization, andS is aC∞ function onT (S) constructed in [9], which is the action
function for Liouville equation.

Therefore,∂λs = 0, and the proof of Theorem1.5 is complete. �
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